
71

Disk Chapter 4:	 Groups
by Volker Herminghaus

Overview4.1	
In the previous chapter we discussed how disks or LUNs get incorporated into VxVM. That
was admittedly a complicated chapter. From here on it is relatively straightforward, at
least until you reach the technical deep dive section. Veritas had some very bright develop-
ers when they designed VxVM, and it shows. Some of the concepts are not easy to grasp
because of the genius behind them. But once you understand them and get the hang of
them, you will never want anything else. Guaranteed.

What is a Disk Group?4.1.1	

How would a single disk be useful in the RAID context? If we used individual disks, we
would still be limited to a certain limited and fixed size, to a certain limited and fixed
number of IOPS, to zero redundancy and so on. It does not make any sense to work with
individual disks if you are running a volume management software. The least you need is a
number of disks working together to overcome the physical limitations of individual disks.
Preferably working together in such a way that control over the whole "disk group" (as
we will call it from here on) can be easily transferred from one host to another in order
to enable easy and reliable failover for cluster configurations. This is exactly what Veritas
implemented with their VxVM disk groups, no less, no more.

To put it quite shortly: A DG is to a SAN what a partition is to a disk: it splices the
available storage into separate items for independent use. When laying out disk groups

V. Herminghaus and A. Sriba, Storage Management in Data Centers,

DOI: 10.1007/978-3-540-85023-6_4, © Springer-Verlag Berlin Heidelberg 2009

72

Disk Groups

care must be taken to balance the amount of independence against space constraints. As
an analogy: you could layout your root disk with just one file system and keep all of /var,
/usr, /home and /opt in the root (/) file system. The advantage is that very little space is
lost to boundary effects: All directories share the same free disk blocks. Whereas if root
(/), /var, /usr, /home and /opt are all separate file systems it would be possible for an
application that is creating a lot of e.g. log data to let the /var file system run out of space
while /usr still has a lot of free space left. What a waste! On the other hand, if all of the
root disk was in a single file system, then the application that used to fill up just the /var
file system may eventually fill up the whole, unified file system, eventually rendering the
system unusable.

The same principle applies to DGs: You place a few disks into a DG destined for a
database, a few others into a DG for a web server, and again others are used in a separate
DG for your mirrored boot disks. How many DG should you create? This question is easily
answered once you think of what kind of software VxVM is. Its purpose is to serve as a
basis for high-availability cluster environments. An HA cluster uses multiple servers con-
nected together and attached to shared storage to run a service on one server. In case of
failure, another server automatically takes control and starts running the service. In order
to do so it first has to take control over the storage, which it does by reserving the set of
disks that are required in order to run the service. That set of disks is what is called a disk
group in VxVM terminology. In the case outlined above, the cluster software would have
one service for the database and another, independent service for the web server. Each
service stores its data on the volumes contained in one disk group. When the host running
the web server fails, the other server takes control of the web server DG by a process called
importing the DG

73

Overview

hostid: beta
hostid: beta

Disk Group

hostid: beta

nfsdg

hostid: beta

hostid: alpha
hostid: alpha

Disk Group

hostid: alpha

oradg

hostid: alpha

hostid: beta
hostid: beta

Disk Group

hostid: beta
hostid: beta

hostid: beta

Disk Group

hostid: beta

sapdg

hostid: beta

Hostname alpha,
runs Oracle service,

imported oradg

Hostname beta,
runs SAP and NFS services,
imported sapdg and nfsdg

Heartbeat Links

Disk groups are designed with high-availability clusters in mind. Figure 4-1:
A disk group contains all storage resources for a certain service
group and is dynamically imported and deported by the cluster
software. During import the hostname of the importing host is
written into the private region database of the disks in the disk
group to prevent concurrent imports by other hosts.

Basically .you would use one DG for your boot environment (although that is not
mandatory) and a DG for every service which the machine is running and which might
eventually be taken over by or migrate to another host. Migration would be done by simply
issuing a command to relinquish control of the disk group (called deporting) on this host
and another command to gain control over the DG on the target host (importing).

As a rule of thumb: If you are absolutely sure that you will never ever move data
between hosts then you might stick with just one DG. In a cluster, use one DG per service
group. If you want to make sure that I/O from one application does not affect another
application then it is a good idea to use DGs to separate them, too.

74

Disk Groups

Easy
Sailing

Vx

Simple Disk Group Operations4.2	

Creating and Displaying a Disk Group
The command for DG operations is called vxdg. It takes a command word and one or several
disk group names and will then work on these objects. To create a DG you pass the init
command word to vxdg, followed by the name of the DG you want
 created as well as at least on disk medium that will become part of the DG. For example,
to create a DG consisting of just one disk, you could type the following:

vxdg init mydg c0t2d0

This command will create a new disk group, make disk c0t2d0 a member of it and flush
this metadata to the Private Region of c0t2d0.

vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t2d0s2 auto:cdsdisk c0t2d0 mydg online
c0t10d0s2 auto:cdsdisk - - online
c0t11d0s2 auto:cdsdisk - - online

As you can see c0t2d0 now carries the name mydg in the GROUP columns of the
vxdisk list output. The DISK column of c0t2d0 says c0t2d0, which is redundant with the
access name. The disk name was initialized with the access name because we didn't sup-
ply a different name. Having the access name as the disk name can be annoying because
eventually the access name may change (e.g. because you attach the disk to a different
controller). So when we add the next disk to the DG we will take care to supply a name
for it.

75

Simple Disk Group Operations

Adding Disks to and Removing Disks from a Disk Group
Adding a disk to a DG is done by supplying the adddisk command word to vxdg. We also
need to tell vxdg which DG we mean by specifying the switch -g <DG-name>.

vxdg -g mydg adddisk mydg02=c0t10d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t2d0s2 auto:cdsdisk c0t2d0 mydg online
c0t10d0s2 auto:cdsdisk mydg02 mydg online
c0t11d0s2 auto:cdsdisk - - online

Looking at the DISK column we find the name mydg02 that we supplied. The suggested
naming convention when naming disks is to use the DG-name followed by a two-digit
counter. We started at 02 because we know that we are going to change the first disk to
mydg01 later on. How can we do that? There are several possibilities. For instance we could
remove the disk from the DG again, then put it back in and supply the right name at that
time. Removing disks from a DG is done by supplying the rmdisk command word to vxdg.

vxdg -g mydg rmdisk c0t2d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t2d0s2 auto:cdsdisk - - online
c0t10d0s2 auto:cdsdisk mydg02 mydg online
c0t11d0s2 auto:cdsdisk - - online

vxdg -g mydg adddisk mydg01=c0t2d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t2d0s2 auto:cdsdisk mydg01 mydg online
c0t10d0s2 auto:cdsdisk mydg02 mydg online
c0t11d0s2 auto:cdsdisk - - online

Now we add a third disk:

vxdg -g mydg adddisk c0t11d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t2d0s2 auto:cdsdisk mydg01 mydg online
c0t10d0s2 auto:cdsdisk mydg02 mydg online
c0t11d0s2 auto:cdsdisk c0t11d0 mydg online

Oops, looks like we forgot to specify a name again! Let's fix this without removing the

76

Disk Groups

disk this time.

Renaming Virtual Objects
The command vxedit can rename almost any VxVM object at any time. Exceptions are
disk group names (which can only be renamed during the import or deport process) and
objects in DGs that are not currently imported (because that is when we have no control
over them).

vxedit -g mydg rename c0t11d0 mydg03
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t2d0s2 auto:cdsdisk mydg01 mydg online
c0t10d0s2 auto:cdsdisk mydg02 mydg online
c0t11d0s2 auto:cdsdisk mydg03 mydg online

Now let's look at where the disk group appears in our UNIX file system, particularly in
the /dev/vx directory structure:

ls -ld /dev/vx/*dsk
drwxr-xr-x 4 root root 512 May 14 16:57 /dev/vx/dsk
drwxr-xr-x 4 root root 512 May 14 16:57 /dev/vx/rdsk
ls -l /dev/vx/dsk
total 2
drwxr-xr-x 2 root root 512 May 14 16:57 mydg

Deporting and Importing Disk Groups
What happens when we relinquish control over the DG by a process called deporting? We
pass the deport command word to vxdg and see what happens, then import the DG again
and check again:

vxdg deport mydg
ls -l /dev/vx/dsk
total 0
vxdg import mydg
ls -l /dev/vx/dsk
total 2
drwxr-xr-x 2 root root 512 May 14 16:57 mydg

Obviously when a DG is imported it is represented in the file system of the computer
as a directory bearing the DG's name located in /dev/vx/dsk and /dev/vx/rdsk. Deporting
the DG also removed the file system representation of the DG by removing these two
directories. Thus, the objects in the DG can no longer be accessed. Whichever host imports
the DG gets the appropriate directory created in /dev/vx/dsk and /dev/vx/rdsk and can
access the DG objects.

77

Simple Disk Group Operations

You can get a listing of all DGs currently imported on a system by issuing the com-
mand:

vxdg list
NAME STATE ID
mydg enabled,cds 1210795596.81.infra0

What you see here is the name of our disk group (mydg), its state (enabled and cds) and
the internal ID by which VxVM addresses it. This ID is generated by the timestamp (num-
ber of seconds since the UNIX epoch – January 01, 1970, 00:00:00 UTC), a short random
number and the hostname of the machine that created the DG. All of this together makes
it highly unlikely that two IDs are ever the same except in the case of a hardware copy
from a storage array (which can indeed be a problem, but at least VxVM 5.0 is prepared
for such cases).

What we know as the name of the DG is merely the human-readable representation
for us poor mortals. Internally, VxVM uses unique IDs for all objects and sometimes we can
make use of them, too, e.g. for reviving disk groups that had been accidentally destroyed.

Destroying Disk Groups
Speaking about destroying, we haven't destroyed a DG yet, so let's do it:

vxdg destroy mydg
vxdg list
NAME STATE ID

OK, all gone. Let's see what disks we have…

vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t2d0s2 auto:cdsdisk - - online
c0t10d0s2 auto:cdsdisk - - online
c0t11d0s2 auto:cdsdisk - - online

Now we create the whole DG with all three disks in one single command:

vxdg init mydg mydg01=c0t2d0 mydg02=c0t10d0 mydg03=c0t11d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t2d0s2 auto:cdsdisk mydg01 mydg online
c0t10d0s2 auto:cdsdisk mydg02 mydg online
c0t11d0s2 auto:cdsdisk mydg03 mydg online

vxdg list
NAME STATE ID

78

Disk Groups

mydg enabled,cds 1210802401.96.infra0

Just as a side note: If you are really smart then you can use perl to find out exactly
what day it was when this example disk group was created. Remember the DG ID holds the
number of seconds since the UNIX epoch? This is the command you need:

perl -e 'print scalar localtime (1210802401),“\n“'
Thu May 15 00:00:01 2008

Nice, isn't it? OK, since creating a DG with multiple disks in a single step was so easy
(you can do this when adding disks, too: just supply multiple name=<accessname> pairs),
let's try removing multiple disks. Does that work, too?

vxdg -g mydg rmdisk mydg01 mydg02 mydg03
VxVM vxdg ERROR V-5-1-10127 disassociating disk-media mydg03:
 Cannot remove last disk in disk group
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t2d0s2 auto:cdsdisk mydg01 mydg online
c0t10d0s2 auto:cdsdisk mydg02 mydg online
c0t11d0s2 auto:cdsdisk mydg03 mydg online

What do we learn from this? First of all, actions in VxVM are transactional, i.e. they
either work or not; they do not start and then break off leaving garbage behind. We also
learn that specifying multiple arguments to rmdisk is valid syntax, since the command was
obviously preparing to remove the third of the three disks when it failed. So it should be
possible to at least remove the two others in one go:

vxdg -g mydg rmdisk mydg01 mydg02
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t2d0s2 auto:cdsdisk - - online
c0t10d0s2 auto:cdsdisk - - online
c0t11d0s2 auto:cdsdisk mydg03 mydg online

That looks good. Now let's try to get rid of the last disk:

vxdg -g mydg rmdisk mydg03
VxVM vxdg ERROR V-5-1-10127 disassociating disk-media mydg03:
 Cannot remove last disk in disk group

We get the same error message. And it should indeed be obvious why VxVM must give
us that error message. Remember that all data about a disk group is exclusively stored
inside the DG itself! In other words, when you remove the last disk from a DG then there is
no space left where VxVM can store information about this DG, like its name, state, flags,

79

Simple Disk Group Operations

volumes etc. There is no storage medium to hold this information. In other words, the
DG cannot exist without at least one member to hold the information about the DG. So
removing the last disk from a DG is equivalent to destroying the DG, and this action should
not be implicitly executed by VxVM for convenience, because it could potentially destroy
important information. Maybe you just wanted to replace the old disks in the DG with new
ones but you wanted to keep the complicated structure of its virtual objects. So you just
remove the old disks from the DG and plan to insert the new ones in the next step. Only to
find out that the DG was implicitly deleted when you removed the old disks, so that when
you try to add the new ones VxVM informs you that there is no such DG. That is surely not
desirable, so VxVM will always ask you to explicitly destroy a DG if that is what you really
want. So let's do it:

vxdg destroy mydg
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:none - - online invalid
c0t2d0s2 auto:cdsdisk - - online
c0t10d0s2 auto:cdsdisk - - online
c0t11d0s2 auto:cdsdisk - - online
vxdg list
NAME STATE ID
ls -l /dev/vx/dsk
total 0

As we can see, nothing is left of our disk group after destroying it. In the technical
deep dive section at the end of the chapter you will learn how to revive an accidentally
destroyed DG!

80

Disk Groups

The Full Battleship

Advanced Disk Group Operations4.3	
In addition to creating and destroying, importing and deporting, and adding and removing
disks from DGs there are more actions and options that we should get into. They are not
normally necessary for day-to-day operations, but may come in handy now and then, so
let's go through them one by one:

Starting All Volumes in a DG
When a DG is imported its volumes are not started. Starting a volume needs to be done
before access is allowed because VxVM needs to check the volume's status and consistency
in order to guarantee data integrity. You can start volumes individually or you can start
all volumes in a DG at once. This is done by executing one of the following commands,
respectively:

vxvol -g <DGname> start volname
vxvol -g <DGname> startall

Listing DGs that are Not Imported
You can see the names of DGs even if they are not imported on your machine. You use the
command vxdisk -o alldgs list for that. It will (kind of) do a physical I/O to each non-
imported disk and read its DG name from the Private Region. The name is then displayed
in parentheses in the normal output format.

vxdisk list # three DGs are imported
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk firstdg01 firstdg online
c0t10d0s2 auto:cdsdisk seconddg01 seconddg online
c0t11d0s2 auto:cdsdisk thirddg01 thirddg online
vxdg deport firstdg seconddg # two are going away
vxdisk list # How are we going to import them if we forgot their names?
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk - - online
c0t10d0s2 auto:cdsdisk - - online

81

Advanced Disk Group Operations

c0t11d0s2 auto:cdsdisk thirddg01 thirddg online
vxdisk -o alldgs list # That's how: Here are the names!
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk - (firstdg) online
c0t10d0s2 auto:cdsdisk - (seconddg) online
c0t11d0s2 auto:cdsdisk thirddg01 thirddg online

Options for Importing or Deporting a DG4.3.1	

A DG is normally imported by the vxdg import <DG> command. In some cases it may be
necessary to supply additional options to the vxdg command to modify its behavior. The
following options are available:

Forced Import if Disks are Missing
If an import fails because not all of the disk in the DG can be accessed, then you can use
the -f flag (forced import) to import the DG regardless. The default is for vxdg import to
refuse import of a DG if not all of its disks can be accessed. The rationale behind that is that
if you were to import such a DG and start its volumes, then if a redundant plex is located
on a missing disk that plex would be marked STALE and would have to be resynchronised
when the disk later comes online. Since it could happen that one of two storage boxes that
hold a DG's disks is unavailable (powered off or disconnected) when we import the DG we
do not want that to cause a full resynchronisation of potentially large amounts of data.
Therefore, the import of such a DG must be manually forced by the administrator.

vxdg -f import mydg

Forced Import of a DG that is Imported Somewhere Else
If an import fails because the DG is already marked as imported by another host then if
and only if we are really sure that the DG is not actually imported by another host
we can specify the -C flag (clear hostid) to undo the other host's reservation. A host that
imports a DG will write its hostname into the Private Region of the DG's disks and thus
mark the DG as imported. The VxVM running on another host trying to import the DG will
see that the DG is imported and normally refuse the import. This is a reservation technique
based on goodwill and cooperation. However, it is just as good as any hard reservation
technique, for instance using SCSI-2 reservation commands. The reason for it being just as
good is that in any reservation technique that is designed as a basis for automated failover
there must be a way to break the reservation in software. Otherwise no automated failover
would be possible if the host that holds the reservation crashes. Even the most elaborate
reservation scheme, using SCSI-3 PGR (persistent group reservation) can break the reser-
vation in software. Of course, care must be taken not to break the reservation lightly or
out of convenience. I have once been called to a customer that was having problems with
data consistency and crashes, and saw them routinely checking the "Clear Hostid" button
in VxVM's GUI. When I asked why they were doing that they replied: "because if we don't

82

Disk Groups

then sometimes the import doesn't work". They were obviously unaware that their data
became corrupted exactly because of what they were doing!

If you want to know more about the hostid field and about "who writes what where
when" then read the technical deep dive section of this chapter beginning at page 89.

vxdg -C import mydg

Renaming a DG
Changing the name of a DG is not as easy for VxVM as changing any other object. You may
remember that the vxedit rename command can be used to alter the name of almost any
virtual object. disk groups are different because they are also connected to the physical
layer: their names appear as directory names in /dev/vx/*dsk. So if vxedit did change
the name of the DG object it would also have to change the name of the DG's directory in
/dev/vx/*dsk. But this directory is not under VxVM control but under the administrator's
control, so we might not have the permissions required to rename the directory. In addi-
tion, existing mount points to volumes inside this directory may become confused if part
of the path changes while the volume is still mounted. You see that renaming a DG that
is already imported is difficult to do right. On the other hand, we need to have the DG
imported before we can make any changes to it. If we did not import the DG then we did
not reserve it and any other host might change the DG's name also.

The solution to this is that renaming can be done while importing or deporting a DG.
In order to do so, we supply the -n flag (new name), followed by the new name, to vxdg.
Depending on whether or not the DG is already imported, use either of the following to
change the name of the DG from old_dg to new_dg:

vxdg -n new_dg import old_dg
vxdg -n new_dg deport old_dg

Temporary Changes to a DG
Some changes to a DG can be made only temporarily. These are importing a DG and renam-
ing a DG upon import. If you supply the -t flag (temporary) when importing a DG then two
things will be different from a normal import: A DG name change will not be persistent,
i.e. the name will only be temporarily changed and will revert to the original when the DG
is imported, or even when the system crashes. This is done by simply omitting to write the
new name to the Private Regions of the DG's disks. The new name resides in memory only
and will be forgotten when as the DG is no longer imported.

One more thing happens: Upon normal import a DG is flagged as both "imported"
and "autoimport" and the hostid field is filled with the host's system name. If the host
was to crash and restart, then when VxVM comes up the DGs are scanned to find ones
that bear the right hostid and are flagged autoimport. Those DGs are then automatically
imported by vxconfigd. The reason for this is to provide similar behavior for DGs as for
plain disks, which do not need to be explicitly prepared for use like DGs. Basically, a DG that
was imported before a reboot will automatically appear imported again after the reboot.
Temporarily importing a DG will flag the DG noautoimport, which makes the system ignore
the DG when it reboots. This is the way that cluster software is supposed to import DGs.

83

Advanced Disk Group Operations

Because when crashed system comes back up, then another node may forcefully import
the DG while the rebooting host's VxVM is autoimporting the DG simultaneously, leading
to a race condition.

vxdg -t import mydg
vxdg -t -n new_dg import old_dg # temporarily rename a DG

Deporting a DG to a specific host
If you want to deport a DG so that it can only be imported by a specific host then you

can do so by specifying the -h flag (host) followed by the name of the target host to the
vxdg deport command. This functionality is rarely needed so we will no go into great detail
here. What happens when you do this is that VxVM writes the new target host name into
the hostid field of the DG when it deports the DG. Any host that then tries to import the
DG will find that the DG appears to be already imported and refuse to import the DG unless
the import is forced using the -C (clear hostid) flag. See the technical deep dive section for
more info on the hostid field.

vxdg -h targethost deport mydg

Disk Group Operations for 4.3.2	 Off-Host Processing

Splitting a Disk Group in Two
If you use so-called snapshots, or point-in-time copies, of volumes for backups and you
do not want you production host to do the backing up of the snapshot contents itself,
then you may want to give the snaphshot to a backup media server which can then read
the data on the snapshot and copy it to backup media. This is called off-host processing.
Off-host processing is not limited to making backups. It can also be used to optimize a file
system, or for creating test data from a live production database. More will have to be said
about snapshots in a later chapter before you can fully understand what is going on in this
context (because we need to cover volumes first), but because this is the disk group chapter
we will cover it here, and you can come back later from the snapshot chapter.

For now, just imagine that we have a disk group consisting of two disks:
mydg01 and mydg02. We can split the DG by specifying which disks (or other virtual
objects) we want to split out of the DG, and supplying a name for the new DG. This
is called DG split and is executed by using the vxdg split command. The syntax is
vxdg split <sourceDG> <destinationDG> <object>:

vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk - - online
c0t10d0s2 auto:cdsdisk mydg01 mydg online
c0t11d0s2 auto:cdsdisk mydg02 mydg online
vxdg split mydg newdg mydg02
vxdisk list

84

Disk Groups

DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk - - online
c0t10d0s2 auto:cdsdisk mydg01 mydg online
c0t11d0s2 auto:cdsdisk mydg02 newdg online
vxdg list
NAME STATE ID
mydg enabled,cds 1210850191.114.infra0
newdg enabled,cds 1210850431.115.infra0

Note that while the DG name has changed for c0t11d0, its disk name is unchanged. It
is still mydg02. We could change that using e.g. vxedit -g newdg rename mydg02 newdg01,
but in most cases the DGs are rejoined after off-host processing, so it is not normally
done.

Joining Two Disk Groups Together
To join two DGs together (typically after off-host processing) just specify them to the vxdg
join command. The syntax is vxdg join <sourceDG> <destinationDG>. For example, to join
the two DGs that were split in the section above, you would use the following command:

vxdg join newdg mydg
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk - - online
c0t10d0s2 auto:cdsdisk mydg01 mydg online
c0t11d0s2 auto:cdsdisk mydg02 mydg online

Moving Objects Between Disk Groups
You can also move objects, like disks or volumes, between two existing DGs by using the

vxdg move command. The syntax is vxdg move <sourceDG> <destinationDG> <object>:

vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk otherdg01 otherdg online
c0t10d0s2 auto:cdsdisk mydg01 mydg online
c0t11d0s2 auto:cdsdisk mydg02 mydg online
vxdg move mydg otherdg mydg01
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk otherdg01 otherdg online
c0t10d0s2 auto:cdsdisk mydg01 otherdg online
c0t11d0s2 auto:cdsdisk mydg02 mydg online

85

Advanced Disk Group Operations

Miscellaneous Disk Group Operations4.3.3	

Setting, Inquiring, and Resetting the Default-DG
Having to specify a -g flag every time we issue a command can become rather unnerving.
Pre-4.0 versions of VxVM used to require the existence of a DG with the name rootdg. This
DG was intended for use with the host's internal disks, where deporting would not make
any sense anyway. Without the rootdg VxVM would not be able to import any other disk
group. In other words, where there was VxVM, there was also a rootdg. This made it a
rather convenient default location for all kinds of objects. It was the default disk group for
all actions. If you did not specify a DG for a command then VxVM would try to find a DG
that contained all of the named objects, starting with the rootdg. Once it found a match it
would use this DG and create, delete or modify the objects as requested. This made it very
easy for beginners to work with VxVM.

Unfortunately it also made it rather easy for administrators to do horrible mistakes,
like unwillingly delete an important volume whose name was not unique. Veritas therefore
decided to prefer safety over convenience and not have VxVM search for the specified
virtual objects automatically any more, but always require the user to explicitly name the
DG. Because the default rootdg is no longer a requirement we can now set and check the
default-DG as we like, using the following commands:

vxdctl defaultdg mydg # to set the default-DG to mydg
vxdg defaultdg # to inquire the current default
mydg

We now no longer need to pass the disk group name for every command. However,
this is a global setting that is valid for the whole machine. It is entered into VxVM's boot
info file, /etc/vx/volboot, where VxVM keeps important information so it can find its own
identity (the hostid that it writes to the DGs is in here, too), the root disk etc. BTW: never
alter this file manually. Never! It is created by the vxdctl init command and is formatted
in a special way. If you mess with it your system may become unbootable!

If you just want to override a system-wide default DG, or set a default DG just for one
session, or if every user wants their own default, then you can export a shell variable named
VXVM_DEFAULTDG and set it to the desired disk group name. You can double-check if you
used the correct variable name by first setting it to a nonexistent DG name and checking
for an error message when you try to create an object. If you get an error message, then it
was indeed the right name and you can then use command line repetition to set the same
variable to the correct DG name.

export VXVM_DEFAULTDG=wrongdg
vxassist make testvol 100m
VxVM vxassist ERROR V-5-1-607 Diskgroup wrongdg not found

86

Disk Groups

Enclosure-based and OS-based naming
If you use SAN disks then VxVM will by default use what are called enclosure-based

names. Their access names are derived not from the physical paths by which the disk can be
reached, but from the type and instance of the storage array they reside in. Depending on
the type of storage you use you may see access names such as the ones below (which are
admittedly simulated for lack of big storage array hardware). The first one is a JBOD disk,
the second one is disk number 8 from IBM shark storage array number 0, and the third is
disk number 4 from EMC Symmetrix number 1:

vxdisk list
DEVICE TYPE DISK GROUP STATUS
Disk_0 auto:cdsdisk - - online
IBM_SHARK0_8 auto:cdsdisk - - online
EMC1_4 auto:cdsdisk - - online

If you prefer the controller paths as access names then you can instruct VxVM to
switch the naming scheme to either ebn (enclosure based naming) or osn (OS based nam-
ing). The change is immediate and only requires you to run the following command:

/usr/sbin/vxddladm set namingscheme=ebn # for enclosure based names
/usr/sbin/vxddladm set namingscheme=osn # for OS based names

Be aware that neither OS-based names nor enclosure-based names are guaranteed to
be identical across hosts! Never write scripts that use access names together with any kind
of force-option, as this may inadvertently destroy data. Don't forget that the words "it used
to work" do not mean "it always works"!

In version 5.0 of VxVM a new namingscheme was introduced: gdn, which stands for
Global Device Naming. It was meant to be a way of naming disks the same on all hosts
accessing the disks. This is not currently possible unless a private region is put on the disk
to hold the access name information. So gdn sounded like a nice idea, but cycling through
several iterations of ebn, osn, and gdn shows that the gdn device names change all the time,
even when we stay on the same host. Look at the following example of what happens when
you switch between gdn and any other naming scheme:

vxdisk list
DEVICE TYPE DISK GROUP STATUS
d_1 auto:cdsdisk mydg01 mydg online
d_2 auto:cdsdisk mydg03 mydg online
d_3 auto:cdsdisk mydg02 mydg online
vxddladm set namingscheme=osn
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk mydg01 mydg online
c0t10d0s2 auto:cdsdisk mydg02 mydg online
c0t11d0s2 auto:cdsdisk mydg03 mydg online
vxddladm set namingscheme=gdn

87

Advanced Disk Group Operations

vxdisk list
DEVICE TYPE DISK GROUP STATUS
d_4 auto:cdsdisk mydg01 mydg online
d_5 auto:cdsdisk mydg03 mydg online
d_6 auto:cdsdisk mydg02 mydg online
vxddladm set namingscheme=ebn
vxdisk list
DEVICE TYPE DISK GROUP STATUS
Disk_1 auto:cdsdisk mydg01 mydg online
Disk_2 auto:cdsdisk mydg03 mydg online
Disk_3 auto:cdsdisk mydg02 mydg online
vxddladm set namingscheme=gdn
vxdisk list
DEVICE TYPE DISK GROUP STATUS
d_7 auto:cdsdisk mydg01 mydg online
d_8 auto:cdsdisk mydg03 mydg online
d_9 auto:cdsdisk mydg02 mydg online

As you see the gdn names change every time. It may just be a bug in this version, but I
suggest it's better not to speak any more about gdn in order to protect the incompetent.

Listing Disks with their OS Native Access Names

If you use enclosure-based names then you may occasionally want to see their actual
controller paths. There are two ways to do that without having to reset the naming scheme
for the whole VxVM installation. The first is to do vxdisk list <accessname> and check
the multipathing info in the last few lines. The second is much better but less commonly
used because not everybody knows it:

vxdisk -e list
DEVICE TYPE DISK GROUP STATUS OS_NATIVE_NAME
Disk_0 auto - - online c0t2d0s2
IBM_SHARK0_8 auto - - online c0t10d0s2
EMC1_4 auto - - online c0t11d0s2

Summary4.3.4	
In this section you learned about disk groups: what the reasoning is behind them, how they
are created and destroyed as well as deported and imported. You saw how to add disks to
a DG and how to take disks away from a DG. We explained where the meta data of a DG
must be stored (100% of it inside the DG itself!) and why this is the case. You know where
a DG object is represented in the UNIX file system and that it will appear on import and
disappear on deport.

If you want to know more, feel free to take the technical deep dive in the next section.
If you want to get on to the next chapter, skip over the deep dive and come back later for

88

Disk Groups

more. It's worth it.

89

Disk Group Implementation Details

Technical Deep Dive

Disk Group Implemen4.4	 tation Details
In the UNIX implementations of VxVM there is exactly one type of disk group. In the
Windows implementation of VxVM there are no less than five types of disk groups, and
none of them really seems to improve on the UNIX type of disk group (the five DG types
are: basic, primary dynamic, secondary dynamic with no protection, secondary dynamic
with SCSI reservation protection, and secondary dynamic for cluster, i.e. with a quorum
acquisition scheme). This illustrates quite nicely how thoroughly a way of thinking or the
environment of an operating system can influence software design. The UNIX VxVM disk
group object fulfills all the needs for reliable enterprise computing. The Windows versions
makes things much more complicated with its five different types of disk groups and adds
nothing noteworthy to the UNIX VxVM's disk group functionality. You will see how easily a
perfect disk group object can be constructed in the following paragraphs.

First of all we need to remember that a disk group's functions include moving the
whole DG from one host to another. This rules out once and for all storing any information
about a DG in the local file system. Why is that? It is simply because if there was (meta)
data about the disk group stored in the local file system, then after the host that holds the
disk group becomes unavailable (e.g. due to crash or power failure) the disk group could
not be easily transferred to the failover host because the meta data cannot be extracted
from the failed host's file system. Alternatively, the DG metadata could be stored in some
kind of repository on all of the hosts that could potentially gain access to it

So where does VxVM store all the meta information about a disk group? It stores it
inside the disk group itself. All of it. Is that hard to do? Well, not really: there is the Private
Region which is destined for VxVM meta data, so there is room for the disk group meta
data. Plus there are access methods inside VxVM to read and write the Private Region so
it can't be too hard. What we would like to know is the concrete data structures that get
written onto a disk when it joins a disk group. Or more precisely: the data structures that
get written to all of the disks in the disk group when a new disk joins.

Representation of Disk Groups in the Private Region
In order to understand exactly how a disk group works let's have a look at what changes in
the Private Region when we use one. To look at the most prominent information of a disk
group we use the vxdisk list <accessname> command, which will reveal quite a lot. Let's
pick our disk c0t2d0 and look at it before it has been treated by vxdisksetup:

vxdisk list c0t2d0
Device: c0t2d0s2
devicetag: c0t2d0
type: auto
info: format=none

90

Disk Groups

flags: online ready private autoconfig invalid
pubpaths: block=/dev/vx/dmp/c0t2d0s2 char=/dev/vx/rdmp/c0t2d0s2
guid: -
udid: IBM%5FDNES-309170Y%5FDISKS%5FAJF18581%20%20%20%20%20%20%20%20
site: -
Multipathing information:
numpaths: 1
c0t2d0s2 state=enabled

This is what VxVM knows about the disk without even initializing it. For instance, look
at the flags section: The disk is flagged as online (this same online status turns up in the
common vxdisk list output). It is also marked as autoconfig (which corresponds to the
auto:... type in vxdisk list, and because it has no Private Region it is flagged as invalid
(just like the invalid status in vxdisk list). Note also the multipathing information in
the last three lines. This is where you see the actual number and details of the controller
paths used by DMP to access the device. Now let's compare this to what the disk looks like
once it is initialized with a Private Region (for our referential convenience the output was
numbered by piping it through cat -n):

vxdisksetup -i c0t2d0
vxdisk list c0t2d0 | cat -n
 1 Device: c0t2d0s2
 2 devicetag: c0t2d0
 3 type: auto
 4 hostid:
 5 disk: name= id=1210805068.106.infra0
 6 group: name= id=
 7 info: format=cdsdisk,privoffset=256,pubslice=2,privslice=2
 8 flags: online ready private autoconfig autoimport
 9 pubpaths: block=/dev/vx/dmp/c0t2d0s2 char=/dev/vx/rdmp/c0t2d0s2
10 guid: {4dfc8d52-1dd2-11b2-8dfa-080020c28592}
11 udid: IBM%5FDNES-309170Y%5FDISKS%5FAJF18581%20%20%20%20%20%20%20%20
12 site: -
13 version: 3.1
14 iosize: min=512 (bytes) max=2048 (blocks)
15 public: slice=2 offset=65792 len=17846208 disk_offset=0
16 private: slice=2 offset=256 len=65536 disk_offset=0
17 update: time=1210805069 seqno=0.2
18 ssb: actual_seqno=0.0
19 headers: 0 240
20 configs: count=1 len=48144
21 logs: count=1 len=7296
22 Defined regions:
23 config priv 000048-000239[000192]: copy=01 offset=000000 disabled
24 config priv 000256-048207[047952]: copy=01 offset=000192 disabled
25 log priv 048208-055503[007296]: copy=01 offset=000000 disabled
26 lockrgn priv 055504-055647[000144]: part=00 offset=000000

91

Disk Group Implementation Details

27 Multipathing information:
28 numpaths: 1
29 c0t2d0s2 state=enabled

OK, that is clearly too much information. Let us just go through the most important
lines and see what we can make of them:

-	 Line 4 shows an empty hostid. This means the disks is available to all systems
because it is not dedicated to a single host or cluster.

-	 Line 5 shows a disk ID (but no human readable disk name yet). Like the disk group ID,
the disk ID also contains the number of seconds since the UNIX epoch.

-	 Line 6 shows that there is no disk group name or ID (no wonder; the disk in not a DG
member yet)

-	 Line 7 shows the format (cdsdisk) as well as Public Region offset and slices for Pub/
Priv

-	 Line 8 shows a new flag, autoimport, which will be explained shortly

-	 Line 12 lists a site, which is uninitialized. This is actually a highly interesting feature
that you can use in stretched dual data centers to optimize performance by defining
the location of the disks as well as the location of the servers and have them read
from the physically closest mirrors. We will not go into further detail on that here,
but now you know where to look for optimization in case of stretched clusters.

-	 Line 17 lists the timestamp of the last change to the disk's configuration. If you know
perl well then you can find out that it has gotten rather late by now (the computer's
time zone is Germany, which is UTC plus 1 hour).

Low-Level Observations of Disk Group Behavior
Now let us reduce the output to the most interesting lines and only check those while we
go through creating, importing, deporting, renaming and destroying a disk group. We do so
by using egrep with an extended search pattern:

vxdisk list c0t2d0 | egrep '^hostid: |^disk: |^group: |^flags: '
hostid:
disk: name= id=1210805068.106.infra0
group: name= id=
flags: online ready private autoconfig autoimport

OK, now we create a disk group from this disk and check to see what has changed:

vxdg init mydg mydg01=c0t2d0
vxdisk list c0t2d0 | egrep '^hostid: |^disk: |^group: |^flags: '
hostid: infra0
disk: name=mydg01 id=1210805068.106.infra0
group: name=mydg id=1210806514.110.infra0
flags: online ready private autoconfig autoimport imported

92

Disk Groups

OK, that makes a lot of sense, actually: The hostid field now holds our system name
(infra0), the disk name is filled in with the name we provided (mydg01), the disk group
information (line 3: group) is updated with name and a newly generated ID (oh my gosh
it's late. Look at the time stamp in the disk group ID!). And there is one more flag that says
the DG is currently imported. We just created the DG, and since we know that only the
server that has imported the DG can alter its contents it makes a lot of sense that VxVM
automatically keeps a newly created DG imported.

OK, what happens when we deport the DG from our host, thus relinquishing control of
it and freeing the DG for anyone on the SAN to take it?

vxdg deport mydg
vxdisk list c0t2d0 | egrep '^hostid: |^disk: |^group: |^flags: '
hostid:
disk: name= id=1210805068.106.infra0
group: name=mydg id=1210806514.110.infra0
flags: online ready private autoconfig

What we see is that the hostid is returned to an empty field, which means that the
disk (or rather: the disk group) is no longer reserved by our host. The imported flag has
gone away, which is rather obvious since the disk group is indeed not imported any more.
The disk's ID has survived but its readable name has disappeared (which is also OK because
whoever has imported the disk group by now might have changed the disk's name using
vxedit rename). And the disk group's ID and name have survived. The reason for this is not
immediately obvious. But consider that the disk group will eventually be re-imported by
our host by passing its name to the vxdg import command. If the DG name was lost upon
deporting we would have a hard time importing the DG back. Let's re-import the DG back
onto our system and see if we get exactly the same output as we got before we deported
it:

vxdg import mydg
vxdisk list c0t2d0 | egrep '^hostid: |^disk: |^group: |^flags: |^update'
hostid: infra0
disk: name=mydg01 id=1210805068.106.infra0
group: name=mydg id=1210806514.110.infra0
flags: online ready private autoconfig autoimport imported
update: time=1210807801 seqno=0.11

Yes, everything is exactly the same as before: our host as written its name into the
hostid field to prevent other VxVM-based systems from trying to import the DG, the disk
name is back, and the DG is marked as imported again. Only the update time stamp shows
the author that it really is time to continue writing this book tomorrow ;)

Identifying Free Extents in a DG
You normally do not care about where the individual free extents in a DG are, because
you do not allocate extents for volumes yourself using vxmake. Instead, you use vxassist
as a high-level command to help you gather space for your volume. Therefore you would

93

Disk Group Implementation Details

normally ask vxassist how large a volume you can make given the required layout con-
straints.

But if you still want to check for individual free extents, out of fun or interest, you can
do so by issuing the vxdg free command:

vxdg -g mydg free
GROUP DISK DEVICE TAG OFFSET LENGTH FLAGS
mydg mydg01 c0t2d0s2 c0t2d0 0 17846208 -

Setting and Inquiring Private Region Redundancy
Normally VxVM will not write to all Private Regions in a DG. It will only activate the first
five disks in any DG and store the Private Region data on those If the disk group is spread
across more than one controller, then the default value is six: three on each controller. They
are called the config disks because they hold the configuration database. The configuration
database is the database of all user-initiated changes to a DG. For instance, when a volume
is created, modified, or deleted this is written into the configuration database of all config
disks. The configuration database (or config-DB) hold much more information than just disk
and volume information. It contains everything that VxVM knows about the DG.

There is another database, which is called the log-DB. The log-DB holds information
about configuration changes that happened without user initiation. E.g. if a disk fails then
the VxVM kernel will detach all plexes that have subdisks on the failed disk. This is effec-
tively a change of the VxVM configuration, yet it was not user-initiated.

You can check which disks are config disks and which are log disks with the vxdg list
command if you supply the disk group names as parameters:

vxdg list mydg | cat -n
 1 Group: mydg
 2 dgid: 1210850191.114.infra0
 3 import-id: 1024.113
 4 flags: cds
 5 version: 140
 6 alignment: 8192 (bytes)
 7 ssb: on
 8 detach-policy: global
 9 dg-fail-policy: dgdisable
10 copies: nconfig=default nlog=default
11 config: seqno=0.1066 permlen=48144 free=48137 templen=3 loglen=7296
12 config disk c0t2d0s2 copy 1 len=48144 state=clean online
13 config disk c0t10d0s2 copy 1 len=48144 state=clean online
14 config disk c0t11d0s2 copy 1 len=48144 state=clean online
15 log disk c0t2d0s2 copy 1 len=7296
16 log disk c0t10d0s2 copy 1 len=7296
17 log disk c0t11d0s2 copy 1 len=7296

Looking at the output you can see in line 10 that the number of copies for the config
and log databases are at their default value. Lines 12-14 list the config disks, 15-17 list the

94

Disk Groups

log disks. Now let's change the number of configs and logs to 1 and 2, respectively. This is a
tricky command line as you will see. It seems that the developers didn't really think deeply
about how to implement it:

vxedit set nconfig=1 mydg # fails because -g <DG> is missing
VxVM vxedit ERROR V-5-1-5455 Operation requires a disk group
vxedit -g mydg set nconfig=1 # fails because no DG passed as a parameter
VxVM vxedit ERROR V-5-1-1670 must specify record names or a search pattern
vxedit -g mydg set nconfig=1 mydg # works (ugly and redundant syntax)
vxedit -g mydg set nconfig=2 mydg # same with the log disks
vxdg list mydg | cat -n
 1 Group: mydg
 2 dgid: 1210850191.114.infra0
 3 import-id: 1024.113
 4 flags: cds
 5 version: 140
 6 alignment: 8192 (bytes)
 7 ssb: on
 8 detach-policy: global
 9 dg-fail-policy: dgdisable
10 copies: nconfig=1 nlog=2
11 config: seqno=0.1071 permlen=48144 free=48137 templen=3 loglen=7296
12 config disk c0t2d0s2 copy 1 len=48144 state=clean online
13 config disk c0t10d0s2 copy 1 len=48144 disabled
14 config disk c0t11d0s2 copy 1 len=48144 disabled
15 log disk c0t2d0s2 copy 1 len=7296 disabled
16 log disk c0t10d0s2 copy 1 len=7296
17 log disk c0t11d0s2 copy 1 len=7296

We can see in line 10 that the number of config copies is now one and the number
of log copies is two. lines 13 and 14 list the former config disks as disabled, and line 15
shows that one of the former log disks is now disabled. We can set the number of config
or log copies to any value greater than zero. There are also the special values default and
all, with their obvious meaning.

Resurrecting an Accidentally Destroyed DG
If we accidentally destroyed a DG and want it back, then here is a neat and undocu-
mented trick: We cannot pass the name of the DG to the vxdg import command any
more. That name is gone. It was invalidated when the DG was destroyed. But we can
specify the old disk group's ID. All we need is find it. And it's actually easy to find: just use
vxdisk list <accessname> on any of the disks that were in the DG, and the DG-ID will be
listed in line 6 of the output:

vxdisk -o alldgs list # DG is completely gone
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk - - online

95

Disk Group Implementation Details

c0t10d0s2 auto:cdsdisk - - online
c0t11d0s2 auto:cdsdisk - - online

vxdisk list c0t11d0 | grep ^group
group: name= id=1210864274.146.infra0
vxdg import 1210864274.146.infra0 # Just use DG-ID instead of DG name
vxdisk list # The DG is back, and all volumes with it!
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk mydg01 mydg online
c0t10d0s2 auto:cdsdisk mydg02 mydg online
c0t11d0s2 auto:cdsdisk mydg03 mydg online

Importing Multiple DGs of the Same Name
Because VxVM does not keep any information about deported DGs it is possible to create
several DGs of the same name by deporting the first DG before creating the next one. For
instance, we will create three independent DGs, all of the same name (adg, which stands
for "a disk group").

vxdg init adg adg01=c0t2d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk adg01 adg online
c0t10d0s2 auto:cdsdisk - - online
c0t11d0s2 auto:cdsdisk - - online
vxdg deport adg
vxdg init adg adg01=c0t10d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk - - online
c0t10d0s2 auto:cdsdisk adg01 adg online
c0t11d0s2 auto:cdsdisk - - online
vxdg deport adg
vxdg init adg adg01=c0t11d0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk - - online
c0t10d0s2 auto:cdsdisk - - online
c0t11d0s2 auto:cdsdisk adg01 adg online

Now let's make sure the other adg DGs are still there. We use the command
vxdisk -o alldgs list to show all DGs, even the ones that are not currently imported.

vxdisk -o alldgs list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk - (adg) online
c0t10d0s2 auto:cdsdisk - (adg) online

96

Disk Groups

c0t11d0s2 auto:cdsdisk adg01 adg online

Now how do we import another adg? When we try vxdg import adg we get an error
saying it is already imported:

vxdg import adg
VxVM vxdg ERROR V-5-1-10978 Disk group adg: import failed:
Disk group exists and is imported

If we try deporting our adg and then importing another adg it fails because VxVM
keeps timestamps on each DG and vxdg import favors the most recent DG. so it will
always re-import the last adg we had. But remember the trick for reviving an accidentally
destroyed DG? We can import and DG using its ID instead of its name. so let's find the ID
of the adg that resides on c0t10d0 (the second one):

vxdisk list c0t10d0|grep ^group
group: name=adg id=1210858812.122.infra0
vxdg import 1210858812.122.infra0
VxVM vxdg ERROR V-5-1-10978 Disk group 1210858812.122.infra0: import failed:
Disk group exists and is imported

OK, it doesn't work without changing the name because then we would have two DGs
with the same name imported at the same time. But we can temporarily rename the new
adg:

vxdg -t -n xdg import 1210858812.122.infra0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk - - online
c0t10d0s2 auto:cdsdisk adg01 xdg online
c0t11d0s2 auto:cdsdisk adg01 adg online

And the third one, too:

vxdisk list c0t2d0|grep ^group
group: name=adg id=1210858684.120.infra0
vxdg -t -n ydg import 1210858684.120.infra0
vxdisk list
DEVICE TYPE DISK GROUP STATUS
c0t2d0s2 auto:cdsdisk adg01 ydg online
c0t10d0s2 auto:cdsdisk adg01 xdg online
c0t11d0s2 auto:cdsdisk adg01 adg online

So now we have three DGs with identical names imported under alias, but as soon
as we deport them, because we supplied the -t flag their names will revert to their
original names. Note that VxVM does not complain about duplicate disk names. They are
in separate name spaces (each DG has its own name space, i.e. its own subdirectory in

97

Disk Group Implementation Details

/etc/vx/*dsk).

4.4.1	 Major and Minor Numbers for Volumes and
Partitions

Let's look at the volume. First, check what the volume looks like in the file system:

ls -l /dev/vx/*dsk/adg/simplevol
brw------- 1 root root 270, 62000 May 16 21:15 /dev/vx/dsk/adg/
simplevol
crw------- 1 root root 270, 62000 May 16 21:16 /dev/vx/rdsk/adg/
simplevol

OK, we see a block" and a "character" device. Compare these to normal disk parti-
tions:

ls -lL /dev/*dsk/c0t10d0s2
brw-r----- 1 root sys 32, 74 May 17 01:48 /dev/dsk/c0t10d0s2
crw-r----- 1 root sys 32, 74 May 17 01:48 /dev/rdsk/c0t10d0s2

As you know, ls outputs the major and minor number instead of the file size when it
displays device files. So the major number for the volume is 270, while the major number
for a normal partition is 32. What do these major numbers correspond to?

egrep " 32$| 270$" /etc/name_to_major
sd 32
vxio 270

As we can see partition I/O is done by the sd (SCSI disk, major number 32) driver, while
volume I/O is passed to the vxio driver (major number 270).

Changing the Minor Numbers for Volume Devices
The minor number identifies the instance that the driver has to deal with. it is different
for each device but identical for character or block device of the same instance. Each DG
carries a base minor number that serves as the bottom value for device minor numbers for
the volumes that reside in the DG. The base minor number is generated randomly along
with the DG in a way that it does not conflict with any existing volume minor numbers.
It is stored as the variable base_minor, which you can inquire using vxprint -F with the
appropriate variable names (there will be more about this specific flag in a later section):
vxprint -g adg -F %name,%base_minor
adg,62000 # base_minor of the DG adg
adg01,-
adg02,-
(...)

98

Disk Groups

But of course it can always happen that we import a DG from another host, or that we
create a new DG while some of our other DGs are deported, and thus VxVM does not know
that the base minor number it picks may result in a conflict.

If a DG is imported that has the same minor numbers as the volumes in a DG that is
already imported, then a warning is output and the volumes are automatically adjusted
to non-conflicting values. However, the DG is not permanently changed. But we can also
manually reminor the DG permanently. This is done by the vxdg reminor command:

vxdg reminor adg 10000
ls -l /dev/vx/*dsk/adg/simplevol
brw------- 1 root root 270, 10000 May 17 01:57 /dev/vx/dsk/adg/
simplevol
crw------- 1 root root 270, 10000 May 17 01:57 /dev/vx/rdsk/adg/
simplevol

As you can see, the minor number has changed from 62000 to 10000.

Why Change the Base Minor Number on a DG?
The base_minor will, as we said before, adjust itself in case of a conflict. However, there is
an important case where this is not a good idea: If you are running an NFS server, then the
clients identify the files on the NFS server by the NFS handle, which is a cookie comprised
of several values. Among these values are the major and minor number of the device and
the inode number of the file. If a failover occurs in a highly available NFS environment, and
the failover host changes the minor numbers of the volumes that it takes control of, then
the clients' NFS handles will become stale and cannot be used any more. NFS failover will
not be transparent any more (which it would otherwise be).

In this case it would indeed be advisable to reminor the DG permanently in order to
avoid future problems. Of course you should also make sure the major numbers are identi-
cal. This can be done by editing the /etc/name_to_major files to make the major numbers
for vxdmp and vxio match on all cluster machines, or by using the haremajor script supplied
with Veritas Cluster Server.

